Hierarchical Si/ZnO trunk-branch nanostructure for photocurrent enhancement
نویسندگان
چکیده
Hierarchical Si/ZnO trunk-branch nanostructures (NSs) have been synthesized by hot wire assisted chemical vapor deposition method for trunk Si nanowires (NWs) on indium tin oxide (ITO) substrate and followed by the vapor transport condensation (VTC) method for zinc oxide (ZnO) nanorods (NRs) which was laterally grown from each Si nanowires (NWs). A spin coating method has been used for zinc oxide (ZnO) seeding. This method is better compared with other group where they used sputtering method for the same process. The sputtering method only results in the growth of ZnO NRs on top of the Si trunk. Our method shows improvement by having the growth evenly distributed on the lateral sides and caps of the Si trunks, resulting in pine-leave-like NSs. Field emission scanning electron microscope image shows the hierarchical nanostructures resembling the shape of the leaves of pine trees. Single crystalline structure for the ZnO branch grown laterally from the crystalline Si trunk has been identified by using a lattice-resolved transmission electron microscope. A preliminary photoelectrochemical (PEC) cell testing has been setup to characterize the photocurrent of sole array of ZnO NR growth by both hydrothermal-grown (HTG) method and VTC method on ITO substrates. VTC-grown ZnO NRs showed greater photocurrent effect due to its better structural properties. The measured photocurrent was also compared with the array of hierarchical Si/ZnO trunk-branch NSs. The cell with the array of Si/ZnO trunk-branch NSs revealed four-fold magnitude enhancement in photocurrent density compared with the sole array of ZnO NRs obtain from VTC processes.
منابع مشابه
Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition
We demonstrate the morphological control method of ZnO nanostructures by atomic layer deposition (ALD) on an Al2O3/ZnO seed layer surface and the application of a hierarchical ZnO nanostructure for a photodetector. Two layers of ZnO and Al2O3 prepared using ALD with different pH values in solution coexisted on the alloy film surface, leading to deactivation of the surface hydroxyl groups. This ...
متن کاملControllable synthesis of branched ZnO/Si nanowire arrays with hierarchical structure
A rational approach for creating branched ZnO/Si nanowire arrays with hierarchical structure was developed based on a combination of three simple and cost-effective synthesis pathways. The crucial procedure included growth of crystalline Si nanowire arrays as backbones by chemical etching of Si substrates, deposition of ZnO thin film as a seed layer by magnetron sputtering, and fabrication of Z...
متن کاملPhysical synthesis methodology and enhanced gas sensing and photoelectrochemical performance of 1D serrated zinc oxide–zinc ferrite nanocomposites
We successfully prepared one-dimensional ZnO-ZnFe2O4 (ZFO) heterostructures for acetone gas-sensing and photoelectrochemical applications, by using sputter deposition of ZFO crystallites on ZnO nanostructure templates. The nanoscale ZFO crystallites were homogeneously coated on the surfaces of the ZnO nanostructures. Electron microscope images revealed that the ZnO-ZFO heterostructures exhibite...
متن کاملNanorod-nanosheet hierarchically structured ZnO crystals on zinc foil as flexible photoanodes for dye-sensitized solar cells.
In this paper, ZnO nanorod-nanosheet hierarchical structures were fabricated using a facile method on zinc foil and used as flexible photoanodes in dye-sensitized solar cells (DSCs). Compared to nanorods (NRs) obtained by the dissolution-precipitation method, the nanorod-nanosheet (NR-NS) hierarchical structures obtained by a second-step homogeneous precipitation improved the performance of DSC...
متن کاملStructural and photoluminescence studies on catalytic growth of silicon/zinc oxide heterostructure nanowires
Silicon/zinc oxide (Si/ZnO) core-shell nanowires (NWs) were prepared on a p-type Si(111) substrate using a two-step growth process. First, indium seed-coated Si NWs (In/Si NWs) were synthesized using a plasma-assisted hot-wire chemical vapor deposition technique. This was then followed by the growth of a ZnO nanostructure shell layer using a vapor transport and condensation method. By varying t...
متن کامل